Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf
نویسندگان
چکیده
Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 (IC50<0.5 μM), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 (IC50>20 μM). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at G0/G1 with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.
منابع مشابه
Oncogenic B-RAF signaling in melanoma impairs the therapeutic advantage of autophagy inhibition.
PURPOSE Metastatic melanoma is characterized by extremely poor survival rates and hence novel therapies are urgently required. The ability of many anticancer drugs to activate autophagy, a lysosomal-mediated catabolic process which usually promotes cell survival, suggests targeting the autophagy pathway may be a novel means to augment therapy. EXPERIMENTAL DESIGN Autophagy and apoptosis were ...
متن کاملCancer Therapy: Preclinical MEK-Independent Survival of B-RAF Melanoma Cells Selected for Resistance to Apoptosis Induced by the RAF Inhibitor PLX4720
Purpose: To examine mechanisms that determine long-term responses of B-RAF melanoma cells to B-RAF inhibitors. Experimental Design: B-RAF melanoma cells were exposed to the B-RAF inhibitor PLX4720 for prolonged periods to select for cells resistant to apoptosis induced by the inhibitor. The resultant cells were analyzed for activation of extracellular signal regulated kinase (ERK),MAP/ERK kinas...
متن کاملSuppression of B-Raf(V600E) cancers by MAPK hyper-activation
B-Raf(V600E) activates MEK/MAPK signalling and acts as oncogenic driver of a variety of cancers, including melanoma, colorectal and papillary thyroid carcinoma. Specific B-Raf(V600E) kinase inhibitors (e.g., Vemurafenib) prove initial efficacy in melanoma followed shortly by acquired resistance, while failing in most other B-Raf(V600E) cancers due to primary resistance. Resistance is due to acq...
متن کاملCancer Therapy: Preclinical Oncogenic B-RAF Signaling in Melanoma Impairs the Therapeutic Advantage of Autophagy Inhibition
Purpose: Metastatic melanoma is characterized by extremely poor survival rates and hence novel therapies are urgently required. The ability of many anticancer drugs to activate autophagy, a lysosomalmediated catabolic process which usually promotes cell survival, suggests targeting the autophagy pathway may be a novel means to augment therapy. Experimental Design: Autophagy and apoptosis were a...
متن کاملMEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720.
PURPOSE To examine mechanisms that determine long-term responses of B-RAF(V600E) melanoma cells to B-RAF inhibitors. EXPERIMENTAL DESIGN B-RAF(V600E) melanoma cells were exposed to the B-RAF inhibitor PLX4720 for prolonged periods to select for cells resistant to apoptosis induced by the inhibitor. The resultant cells were analyzed for activation of extracellular signal regulated kinase (ERK)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2013